Rabu, 28 Desember 2011

Mengenal Visi Komputer

Visi komputer (computer vision) adalah ilmu dan teknologi mesin yang melihat, di mana lihat dalam hal ini berarti bahwa mesin mampu mengekstrak informasi dari gambar yang diperlukan untuk menyelesaikan tugas tertentu.visi komputer berkaitan dengan teoridi balik sistem buatan bahwa ekstrak informasi dari gambar. Data gambar dapat mengambilbanyak bentuk,seperti urutan video, pandangan dari beberapa kamera,atau data multi-dimensidari scanner medis.

Contoh aplikasi dari visi komputer mencakup sistem untuk :

    * Pengendalian proses (misalnya, sebuah robot industri atau kendaraan otonom).
    * Mendeteksi peristiwa (misalnya, untuk pengawasan visual atau orang menghitung).
    * Mengorganisir informasi (misalnya, untuk pengindeksan database foto dan gambarurutan).
    * Modeling benda atau lingkungan (misalnya, inspeksi industri,analisis citra medis ataumodel topografi).
    * Interaksi (misalnya, sebagai input ke perangkat untuk interaksi komputer-manusia).


PENERAPAN KOMPUTER VISION ANTARA LAIN :

Bidang Pertahanan dan Keamanan (Militer).
Contoh jelas adalah deteksi tentara musuh atau kendaraan dan bimbingan rudal. Lebihsistem canggih untuk panduan mengirim rudal rudal ke daerah daripada target yang spesifik,dan pemilihan target yang dibuat ketika rudal mencapai daerah berdasarkan data citradiperoleh secara lokal. konsep modern militer, seperti “kesadaran medan perang”,menunjukkan bahwa berbagai sensor, termasuk sensor gambar, menyediakan kaya setinformasi tentang adegan tempur yang dapat digunakan untuk mendukung keputusanstrategis. Dalam hal ini, pengolahan otomatis data yang digunakan untuk mengurangikompleksitas dan informasi sekering dari sensor ganda untuk meningkatkan keandalan.

Bidang Didalam Kendaraan Otonom.

kendaraan otonom, yang meliputi submersibles, kendaraan darat (robot kecil denganroda, mobil atau truk), kendaraan udara, dan kendaraan udara tak berawak (UAV). Tingkatberkisar otonomi dari sepenuhnya otonom (berawak) kendaraan untuk kendaraan di manasistem visi berbasis komputer mendukung driver atau pilot dalam berbagai situasi.Sepenuhnya otonom kendaraan biasanya menggunakan visi komputer untuk navigasi, yakniuntuk mengetahui mana itu, atau untuk menghasilkan peta lingkungan (SLAM) dan untuk mendeteksi rintangan. Hal ini juga dapat digunakan untuk mendeteksi peristiwa-peristiwatugas tertentu yang spesifik, e. g., sebuah UAV mencari kebakaran hutan. Contoh sistempendukung sistem peringatan hambatan dalam mobil, dan sistem untuk pendaratan pesawatotonom. Beberapa produsen mobil telah menunjukkan sistem otonomi mengemudi mobil,tapi teknologi ini masih belum mencapai tingkat di mana dapat diletakkan di pasar. Adabanyak contoh kendaraan otonom militer mulai dari rudal maju, untuk UAV untuk misipengintaian atau bimbingan rudal. Ruang eksplorasi sudah dibuat dengan kendaraan otonommenggunakan visi komputer, e. g., NASA Mars Exploration Rover dan Rover ExoMars ESA.

Bidang Industri.

kadang-kadang disebut visi mesin, dimana informasi ini diekstraksi untuk tujuanmendukung proses manufaktur. Salah satu contohnya adalah kendali mutu dimana rincianatau produk akhir yang secara otomatis diperiksa untuk menemukan cacat. Contoh lainadalah pengukuran posisi dan orientasi rincian yang akan dijemput oleh lengan robot. Mesinvisi juga banyak digunakan dalam proses pertanian untuk menghilangkan bahan makananyang tidak diinginkan dari bahan massal, proses yang disebut sortir optik.

Bidang Pengolahan Citra Medis.

Daerah ini dicirikan oleh ekstraksi informasi dari data citra untuk tujuan membuatdiagnosis medis pasien. Secara umum, data citra dalam bentuk gambar mikroskop, gambarX-ray, gambar angiografi, gambar ultrasonik, dan gambar tomografi. Contoh informasi yangdapat diekstraksi dari data gambar tersebut deteksi tumor, arteriosclerosis atau perubahanmemfitnah lainnya. Hal ini juga dapat pengukuran dimensi organ, aliran darah, dll areaaplikasi ini juga mendukung penelitian medis dengan memberikan informasi baru, misalnya,tentang struktur otak, atau tentang kualitas perawatan medis.

Bidang Neurobiologi.

Khususnya studi tentang sistem biological vision Selama abad terakhir, telah terjadi studiekstensif dari mata, neuron, dan struktur otak dikhususkan untuk pengolahan rangsangan visualpada manusia dan berbagai hewan. Hal ini menimbulkan gambaran kasar, namun rumit, tentang
bagaimana “sebenarnya” sistem visi beroperasi dalam menyelesaikan tugas
-tugas visi tertentuyang terkait. Hasil ini telah menyebabkan subfield di dalam visi komputer di mana sistem buatanyang dirancang untuk meniru pengolahan dan perilaku sistem biologi, pada berbagai tingkatkompleksitas. Juga, beberapa metode pembelajaran berbasis komputer yang dikembangkandalam visi memiliki latar belakang mereka dalam biologi.

Bidang Industri Perfilman

Semua efek-efek di dunia akting , animasi, dan penyotingan adegan film semua direkam dengan perangkat elektronik yang dihubungkan dengan komputer. Animasinya juga di kembangkan mempergunakan animasi yang dibuat dengan aplikasi komputer.Sebagai contoh film-film Hollywood berjudul TITANIC itu sebenarnya tambahananimasi untuk menggambarkan kapal raksasa yang pecah dan tenggelam, sehinggatampak menjadi seolah-olah mirip dengan kejadian nyata.

Bidang Kecerdasan Buatan.

Keterkaitan dengan perencanaan otonom atau musyawarah untuk sistem roboticaluntuk menavigasi melalui lingkungan. Pemahaman yang rinci tentang lingkungan inidiperlukan untuk menavigasi melalui mereka. Information about the environment could beprovided by a computer vision system, acting as a vision sensor and providing high-levelinformation about the environment and the robot. Informasi tentang lingkungan dapatdiberikan oleh sistem visi komputer, bertindak sebagai sensor visi dan memberikan informasitingkat tinggi tentang lingkungan dan robot. Buatan kecerdasan dan visi lain berbagi topik komputer seperti pengenalan pola dan teknik pembelajaran. Akibatnya, visi komputerkadang-kadang dilihat sebagai bagian dari bidang kecerdasan buatan atau ilmu bidangkomputer secara umum.

Bidang Pemrosesan Sinyal.

Banyak metode untuk pemrosesan sinyal satu-variabel, biasanya sinyal temporal,dapat diperpanjang dengan cara alami untuk pengolahan sinyal dua variabel atau sinyalmulti-variabel dalam visi komputer. Namun, karena sifat spesifik gambar ada banyak metode dikembangkan dalam visi komputer yang tidak memiliki mitra dalam pengolahan sinyal satu-variabel. Sebuah karakter yang berbeda dari metode ini adalah kenyataan bahwa merekaadalah non-linear yang bersama-sama dengan dimensi-multi sinyal, mendefinisikan subfielddalam pemrosesan sinyal sebagai bagian dari visi komputer.

Bidang Fisika.

Fisika merupakan bidang lain yang terkait erat dengan Computer vision. sistem Computervision bergantung pada sensor gambar yang mendeteksi radiasi elektromagnetik yangbiasanya dalam bentuk baik cahaya tampak atau infra-merah sensor dirancang denganmengunakan fisika solid-state. Proses di mana cahaya merambat dan mencerminkan off permukaan dijelaskan menggunakan optik. sensor gambar canggih bahkan memintamekanika kuantum untuk memberikan pemahaman lengkap dari proses pembentukangambar. Selain itu, berbagai masalah pegukuran fisika dapat di atasi dengan menggunakanComputer Vision, untuk gerakan misalnya dalam cairan.

Bidang Matematika Murni.

Sebagai contoh, banyak metode dalam visi komputer didasarkan pada statistik, optimasiatau geometri. Akhirnya, bagian penting dari lapangan dikhususkan untuk aspek pelaksanaanvisi komputer, bagaimana metode yang ada dapat diwujudkan dalam berbagai kombinasiperangkat lunak dan perangkat keras, atau bagaimana metode ini dapat dimodifikasi untuk mendapatkan kecepatan pemrosesan tanpa kehilangan terlalu banyak kinerja .

Hubungan antara visi komputer dan berbagai bidang lainnya

Banyak kesepakatan kecerdasan buatan dengan perencanaan otonom atau musyawarah untuk sistem robotical untuk menavigasi melalui lingkungan. Pemahaman yang rinci tentang lingkungan ini diperlukan untuk menavigasi melalui mereka. Informasi tentang lingkungan dapat diberikan oleh sistem visi komputer, bertindak sebagai sensor visi dan memberikan informasi tingkat tinggi tentang lingkungan dan robot. Kecerdasan buatan dan topik-topik berbagi komputer visi lain seperti pengenalan pola dan teknik pembelajaran. Akibatnya, visi komputer kadang-kadang dilihat sebagai bagian dari bidang kecerdasan buatan atau ilmu bidang komputer secara umum.
Fisika merupakan bidang lain yang terkait erat dengan visi komputer. sistem visi Komputer bergantung pada sensor gambar yang mendeteksi radiasi elektromagnetik yang biasanya dalam bentuk baik cahaya tampak atau infra-merah. Sensor dirancang dengan menggunakan fisika solid-state. Proses di mana cahaya merambat dan mencerminkan off permukaan dijelaskan menggunakan optik. sensor gambar canggih bahkan meminta mekanika kuantum untuk memberikan pemahaman lengkap dari proses pembentukan gambar. Selain itu, berbagai masalah pengukuran fisika dapat diatasi dengan menggunakan visi komputer, untuk gerakan misalnya dalam cairan.
Bidang ketiga yang memainkan peran penting adalah neurobiologi, khususnya studi tentang sistem visi biologis. Selama abad terakhir, telah terjadi studi ekstensif dari mata, neuron, dan struktur otak dikhususkan untuk pengolahan rangsangan visual pada manusia dan berbagai hewan. Hal ini menimbulkan gambaran kasar, namun rumit, tentang bagaimana “sebenarnya” sistem visi beroperasi dalam menyelesaikan tugas-tugas visi tertentu yang terkait. Hasil ini telah menyebabkan subfield di dalam visi komputer di mana sistem buatan yang dirancang untuk meniru pengolahan dan perilaku sistem biologi, pada berbagai tingkat kompleksitas. Juga, beberapa metode pembelajaran berbasis komputer yang dikembangkan dalam visi memiliki latar belakang mereka dalam biologi.
Namun bidang lain yang terkait dengan visi komputer pemrosesan sinyal. Banyak metode untuk pemrosesan sinyal satu-variabel, biasanya sinyal temporal, dapat diperpanjang dengan cara alami untuk pengolahan sinyal dua variabel atau sinyal multi-variabel dalam visi komputer. Namun, karena sifat spesifik gambar ada banyak metode dikembangkan dalam visi komputer yang tidak memiliki mitra dalam pengolahan sinyal satu-variabel. Sebuah karakter yang berbeda dari metode ini adalah kenyataan bahwa mereka adalah non-linear yang bersama-sama dengan dimensi-multi sinyal, mendefinisikan subfield dalam pemrosesan sinyal sebagai bagian dari visi computer

Mengenal Teknologi Wireless

Komputer-komputer yang berada dalam wilayah Wireless Network bisa sukses dalam mengirim dan menerima data, dari dan ke sesamanya, maka ada tiga komponen dibutuhkan. Yaitu:
1.     Sinyal Radio (Radio Signal).
2.     Format Data (Data Format).
3.     Struktur Jaringan atau Network (Network Structure).
Masing-masing dari ketiga komponen ini berdiri sendiri-sendiri dalam cara kerja dan fungsinya. Kita mengenal adanya 7 Model Lapisan OSI (Open System Connection), yaitu:
  • 1.      Physical Layer (Lapisan Fisik)
  •   Data-Link Layer (Lapisan Keterkaitan Data)
  • Network Layer (Lapisan Jaringan)
  • Transport Layer (Lapisan Transport)
  • Session Layer (Lapisan Sesi)
  •   Presentation Layer (Lapisan Presentasi)
  • Application Layer (Lapisan Aplikasi)

Masing-masing dari ketiga komponen yang telah disebutkan di atas berada dalam lapisan yang berbeda-beda. Mereka bekerja dan mengontrol lapisan yang berbeda.  cara kerja wireless LAN dapat diumpakan seperti cara kerja modem dalam mengirim dan menerima data, ke dan dari internet. Saat akan mengirim data, peralatan-peralatan Wireless tadi akan berfungsi sebagai alat yang mengubah data digital menjadi sinyal radio. Lalu saat menerima, peralatan tadi berfungsi sebagai alat yang mengubah sinyal radio menjadi data digital yang bisa dimengerti dan diproses oleh komputer.

Prinsip dasar yang digunakan pada teknologi wireless ini sebenarnya diambil dari persamaan yang dibuat oleh James Clerk Maxwell di tahun 1964. Dalam persamaan itu, dengan gamblang dan jelas Maxwell berhasil menunjukkan fakta bahwa, setiap perubahan yang terjadi dalam medan magnet itu akan menciptakan medan-medan listrik. Dan sebaliknya, setiap perubahan yang terjadi dalam medan-medan listrik itu akan menciptaken medan-medan magnet.
Lebih lanjut Maxwell menjelaskan, saat arus listrik (AC atau alternating current) bergerak melalui kabel atau sarana fisik (konduktor) lainnya, maka, beberapa bagian dari energinya akan terlepas ke ruang bebas di sekitarnya, lalu membentuk medan magnet atau alternating magnetic field.

Kemudian, medan magnet yang tercipta dari energy yang terlepas itu akan menciptakan medan listrik di ruang bebas, yang kemudian akan menciptakan medan magnet lagi, lalu medan listrik lagi, medan magnet lagi, dan seterusnya, hingga arus listrik yang asli atau yang pertama terhenti (terputus, red). Bentuk energy yang tercipta dari perubahan-perubahan ini, disebut dengan radiasi elektromagnetik (electromagnetic radiation), atau biasa kita kenal sebagai gelombang radio. Itu artinya, radio dapat di definisikan sebagai radiasi dari energi elektromagnetik yang terlepas ke udara (ruang bebas). Alat yang menghasilkan gelombang radio itu biasa dinamakan TRANSMITTER. Lalu alat yang digunakan untuk mendeteksi dan menangkap gelombang radio yang ada udara itu, biasa dinamakan RECEIVER.

Agar kedua alat ini (transmitter dan receiver) lebih fokus saat mengirim, membuat pola gelombang, mengarahkan, meningkatkan, dan menangkap sinyal radio, ke dan dari udara, maka dibantulah dengan alat lain, yaitu ANTENA.
Berkat persamaan dari Maxwell, transmitter, receiver, serta antena, yang kemudian disatukan dalam semua peralatan wireless LAN itulah, maka komputer bisa berkomunikasi, mengirim dan menerima data melalui gelombang radio, atau biasa disebut dengan wireless netwok.

Begitu banyak stasiun Radio dengan frequency yang berbeda-beda agar tidak saling bertabrakan, gelombang radio yang akan dikirimkan ke udara itu bisa diatur frequencynya. Yaitu dengan cara mengatur atau memodifikasi arus listrik yang berada pada peralatan pengirim dan penerima tadi (transmitter, receiver).
Dan jarak yang menjadi pemisah antar frequency dinamakan SPECTRUM. Lalu, bagian terkecil dari spectrum disebut dengan BAND. Dan untuk mengukur jumlah perulangan dari satu gelombang ke gelombang yang terjadi dalam hitungan detik, digunakanlah satuan HERTZ (Hz).

Hertz, diambil dari nama orang yang pertama kali melakukan percobaan mengirim dan menangkap gelombang radio, yaitu HEINRICH HERTZ. Satu hertz dihitung sebagai jarak antara satu gelombang ke gelombang berikutnya. Dan sinyal radio itu umumnya berada pada frequency ribuan, jutaan, atau milyaran hertz (KHz, MHz, GHz). Dengan mengatur frequency itulah maka sinyal radio bisa tidak saling bertabrakan.

Model Arsitektur Telematika

Arsitektur telematika menurut adalah sebuah aplikasi yang secara logic berada diantara lapisan aplikasi (application layer dan lapisan data dari sebuah arsitektur layer – layer TCP/IP.

Tiga elemen utama sebuah arsitektur, masing-masing sering dianggap sebagai arsitektur, adalah:
1. a. Arsitektur sistem pemrosesan, menentukan standar teknis untuk hardware, lingkungan sistem operasi, dan software aplikasi, yang diperlukan untuk menangani persyaratan pemrosesan informasi perusahaan dalam spektrum yang lengkap. Standar merupakan format, prosedur, dan antar muka, yang menjamin bahwa perlengkapan dan software dari sekumpulan penyalur akan bekerja sama.
2. b. Arsitektur telekomunikasi dan jaringan, menentukan kaitan di antara fasilitas komunikasi perusahaan, yang melaluinya informasi bergerak dalam organisasi dan ke peserta dari organisasi lain, dan hal ini juga tergantung dari standar yang berlaku.
3. c. Arsitektur data, sejauh ini merupakan yang paling rumit diantara ketiga arsitektur di atas, dan termasuk yang relatif sulit dalam implementasinya, menentukan organisasi data untuk tujuan referensi silang dan penyesuaian ulang, serta untuk penciptaan sumber informasi yang dapat diakses oleh aplikasi bisnis dalam lingkup luas.

Arsitektur klien – Server Telematika
Arsitektur klien-server telematika terdiri dari 2 buah arsitektur yakni, arsitektur sisi client dan sisi servernya :

1. Arsitektur klien
Istilah ini merujuk pada pelaksanaan atau penyimpanan data pada browser (atau klien) sisikoneksi HTTP. JavaScript adalah sebuah contoh dari sisi klien eksekusi, dan cookie adalahcontoh dari sisi klien penyimpanan. Lihat Cookie, Server Side.
Karakteristik Klien :
· Selalu memulai permintaan ke server.
· Menunggu balasan.
· Menerima balasan.
· Biasanya terhubung ke sejumlah kecil dari server pada satu waktu.
· Biasanya berinteraksi langsung dengan pengguna akhir dengan menggunakan antarmuka pengguna seperti antarmuka pengguna grafis.
· Khusus jenis klien mencakup: web browser, e-mail klien, dan online chat klien.



2. Arsitektur Sisi Server
Sebuah eksekusi sisi server adalah server Web khusus eksekusi yang melampaui standar metode HTTP itu harus mendukung. Sebagai contoh, penggunaan CGI script sisi server khusus tag tertanam di halaman HTML; tag ini memicu tindakan terjadi atau program untuk mengeksekusi.
Karakteristik Server:
· Selalu menunggu permintaan dari salah satu klien.
· Melayani klien permintaan kemudian menjawab dengan data yang diminta ke klien.
· Sebuah server dapat berkomunikasi dengan server lain untuk melayani permintaan klien.
· Jenis server khusus mencakup: web server, FTP server, database server, E-mail server, file server, print server. Kebanyakan web layanan ini juga jenis server.

Keterkaitan antara arsitektur sisi client dan sisi server :
1. Arsitektur Single-Tier
Definisi satu-tier arsitektur, seperti yang ditunjukkan pada gambar di bawah ini, adalahbahwa semua komponen produksi dari sistem dijalankan pada komputer yang sama. Ini adalah sederhana dan paling mahal alternatif. Ada kurang perlengkapan untuk membeli dan mempertahankan. Kelemahan dari jenis ini pelaksanaan keamanan lebih rendah dan kurangnya skalabilitas. Sebuah arsitektur skalabel ketika dapat dengan mudah diperluas atau ditambah untuk memenuhi kebutuhan peningkatan kinerja. Setelah semua komponen utama situs dan data di satu komputer di belakang firewall daun domain situs lebih rentan terhadap serangan berbahaya. Menjalankan semua komponen situs pada sebuah komputer juga membatasi ekspansi dan optimalisasi kemungkinan. Anda hanya dapat menambahkan begitu banyak memori atau begitubanyak CPU untuk sebuah server tunggal.

2. Arsitektur Two-tier
Dalam dua lapis klien server arsitektur, antarmuka pengguna pengguna ditempatkan dilingkungan desktop dan sistem manajemen database jasa biasanya dalam sebuah server yang lebih kuat merupakan mesin yang menyediakan layanan bagi banyak klien. Pengolahan informasi dibagi antara sistem user interface lingkungan dan lingkungan server manajemen database. Manajemen database server mendukung untuk disimpan prosedur dan pemicu.. Vendor perangkat lunak menyediakan alat-alat untuk menyederhanakan pengembangan aplikasi untuk dua lapis klien / server arsitektur.

3. Arsitektur Three-tier
Arsitektur Three-Tier diperkenalkan untuk mengatasi kelemahan dari arsitektur two-tier. Di tiga tingkatan arsitektur, sebuah middleware digunakan antara sistem user interface lingkungan klien dan server manajemen database lingkungan. Middleware ini diimplementasikan dalam berbagai cara seperti pengolahan transaksi monitor, pesan server atau aplikasi server. The middleware menjalankan fungsi dari antrian, eksekusi aplikasi dan database pementasan. Di samping itu middleware menambahkan penjadwalan dan prioritas untuk bekerja di kemajuan. Three-tier klien / server arsitektur digunakan untuk meningkatkan performa untuk jumlah pengguna yang besar dan juga meningkatkan fleksibilitas ketika dibandingkan dengan pendekatan dua tingkat.Kekurangan dari tiga tingkatan arsitektur adalah bahwa lingkungan pengembangan lebih sulit untuk digunakan daripada pengembangan aplikasi dari dua lapis.